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Abstract

A procedure is developed for simultaneous shape and topology design optimization of linear elastic two!
dimensional continuum structures[ An intuitive approach is presented to treat such topological problems
whereby material is eliminated from within the structure "by introducing holes at regions of low stress#
through a sequence of shape optimization processes[ A mathematical programming technique coupled with
the boundary element "BE# method of response and sensitivity analyses enables the optimal positioning of
these holes plus optimization of the overall structural shape[ The analytical derivative BE formulation is
explained together with the use of appropriate design velocity _elds\ and example problems are solved to
demonstrate the optimization procedure[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Topology design optimization\ as part of the wider _eld of structural optimization\ refers to
optimal design problems where the performance of a structure or component is optimized through
a variation of its topology[ In the case of discrete structures such as trusses or frames\ topology is
described by the number of bars and joints and the order in which the bars are connected to one
another[ For continuum structures like ~at plates or three!dimensional solid bodies\ the topological
design variables may be the number of holes:cavities or may describe the connectivity of the
domain such that the structure is simply! or multiply!connected[ In either case\ the design variables
involved are intrinsically discrete in nature\ and topology optimization is essentially a material
distribution:arrangement problem[

The study of arrangements is at the core of combinatorics\ and discrete optimization can be
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considered one form of combinatorial problems and where the solution space may comprise a
potentially huge number of feasible permutations:combinations[ As di}erential calculus is applied
only to continuous variables and functions\ calculus methods may not be used to treat discrete
problems which have to be solved by enumerating all or a signi_cant fraction of the solution space[
This is the reason why discrete optimization tasks are di.cult\ as computational order can grow
either logarithmically\ polynomially or exponentially with the number of discrete choices to be
resolved "Parker and Rardin\ 0877#[ The lack of generally reliable and e.cient algorithms for such
optimization may have discouraged the tackling of problems of practical sizes[ Consequently\ non!
exact procedures based on heuristics and intuition occupy an important place in the _eld of discrete
optimization[ These non!exact algorithms can achieve a candidate solution that is feasible\ but the
solution may or may not be optimal\ or may even be arbitrarily far from the true optimum[
Nevertheless\ discrete decisions are encountered and are inevitable in almost all _elds of engineering
design\ especially with regards to conceptual design[ There have been examples of discrete opti!
mization techniques applied to engineering design such as that by Sandgren "0889a\ b# where the
branch!and!bound method is used to optimize conceptual design decisions like the selection of the
material\ structural cross!section\ and the number of gear teeth to be used in various systems[

Topology design optimization is one area dominated by discrete decisions\ and it is the discrete
nature of the problem that makes it much more complex and a less well!developed _eld than shape
optimization[ However\ it is evident that the topology design of a structure\ by determining its
concept and con_guration\ has a potentially far greater impact on its performance than does the
geometric shape[ For generating optimal topologies of truss structures\ heuristically! or intuitively!
based techniques are usually employed so as to avoid dealing directly with the discrete nature of
the problem[ Some examples of these are the rule!based methods of Hajela and Sangameshwaran
"088# and the ground structure approach by Zhou and Rozvany "0880#[ For the case of continuum
structures\ intuitive approaches are also usually adopted[ The ability to modify the connectivity of
a structure will produce better results in an optimal design procedure compared to the standard
shape optimization scheme[ Topology design optimization of continuum structures in two!dimen!
sional elastostatics is a problem investigated in this present work\ where a procedure is developed
to achieve simultaneous shape and topological optimum[

1[ Topological optimization technique

For dealing with topology design problems\ three conceptually di}erent techniques can be
identi_ed from the structural optimization literature[ However\ the structural analysis procedures
used in this area have all been based on the _nite element "FE# method[ The most well!developed
technique is the {composites:microstructures| approach of Bendsoe and Kikuchi "0877# where the
distribution of material is determined through a sizing optimization of material density within the
_nite elements[ This represents the use of composite materials "obtained through perforation# for
modelling the structure\ with a homogenization method applied to relate the e}ective modulus to
the size and orientation of the hole:perforation in each element[ This approach has been described
as a relaxed formulation of the optimal shape design problem "Allaire and Kohn\ 0882#\ putting
it on a sound mathematical basis[ By discretizing the design space\ the approach intuitively removes
the discrete character of topological optimization and transforms it to a problem with continuous
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variables "parameters of the perforations#[ However\ there is still a remaining question of deciding
whether an element represents material or void\ especially for elements with resulting intermediate
densities\ and this is the heuristic aspect of the technique necessary to make such yesÐno decisions[
Di}erent interpretations of the optimal distribution of material in the domain can give rise to
topologically di}erent resulting structures[

The second technique for topology optimization is referred to here as the {element removal|
approach as demonstrated by Atrek "0878#\ Russell and Manoochehri "0878# and Rodriguez and
Seireg "0881#[ In this method\ shape and topological changes are e}ected by removing elements
from a structure after an FE analysis[ Intuitively!based criteria "usually involving stresses and
strains# are used to identify which elements can be eliminated to minimize structural weight subject
to maximum stress constraints[ The problem de_nition in this approach is greatly simpli_ed as no
mathematical programming optimization techniques are involved and thus there is not even the
need to de_ne design variables[ However\ similar to the composites approach\ the resulting struc!
tural boundaries usually consist of jagged edges because they are formed by the remaining elements[
Pattern recognition and image processing techniques are thus usually necessary to deduce\
smoothen and parameterize the _nal resulting boundaries[

The third technique is referred to here as the {introduction of hole| approach as performed by
Eschenauer and Schumacher "0882# and Eschenauer et al[ "0883#[ An initial shape optimization
process is carried out on a structure after which some intuitive criteria are used to locate which
regions in the domain are best for introducing cutouts or holes in the design[ With the topological
change made by adding a hole or cutout\ the new modi_ed design is put through another shape
optimization process and the whole procedure is repeated until some convergence criteria are
satis_ed[ This approach thus works by performing shape optimization on a sequence of topo!
logically di}erent con_gurations\ and comparing the objective function values among these discrete
and distinct alternatives[ It is a viable and e}ective strategy in practice and overcomes the previously
mentioned disadvantages of the other two approaches\ and it is the technique adopted in this
present work[ An important di}erence between this and the previous two approaches is that\ in
this method\ boundary shape parameterization is required as input to the solution procedure[ This
is because shape optimization problems are treated with design variables de_ned for the main
structural body as well as the inserted holes:cutouts\ unlike the composites approach where only
a sizing optimization is carried out[ Hence a shape optimization scheme is essential to the overall
procedure in this approach to be used[

The methodology developed here is similar to that of Eschenauer et al[ "0883# except for some
important di}erences[ Firstly\ the boundary element "BE# method is used instead of the FE
method[ Being a boundary!oriented technique\ the BE method lends itself easily to shape design
considerations and is highly accurate for sensitivity analysis[ However\ as the stress response in
the domain is needed for selecting the locations for new holes to be inserted\ post!processing of
the BE results is necessary to compute stresses at interior points[ The second di}erence is that the
holes introduced here are of _nite sizes\ while those in Eschenauer et al[ "0883# are of initial
in_nitesimal sizes with the assumption that the macroscopic stress _eld of the main body remains
undisturbed while the microscopic stress _eld will exhibit local stress concentrations in the vicinity
of the hole[ Thirdly\ the holes are to be introduced at points of lowest von Mises equivalent stresses\
instead of lowest value of some special characteristic functions derived based on principal stresses[
In any case\ these hole!positioning criteria are all intuitively!based\ and so it has been assumed
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here that low von Mises stresses are good indicators of regions where structural material has not
been e.ciently utilized and can be eliminated[ Fourthly\ the holes introduced here are of a _xed
circular shape and parameterized by design variables of position and size "radius#\ instead of
assuming free!form shapes using shape representation techniques[ There is no doubt that allowing
arbitrary free!form shape variation will produce results of a stronger optimum ^ however\ using
basic circular!shaped holes does keep the procedure simple and reduce the number of design
variables to be treated in the optimization process[ In addition\ the use of basic shape par!
ameterizations only allows holes to be introduced at the domain interior but not at the boundaries\
unlike that in Eschenauer et al[ "0883# which can also introduce cutouts and notches at the
boundaries[ Such a capability requires highly sophisticated shape representation techniques such
as non!uniform rational B!splines "NURBS# to treat edges with sharp corners[ Future work will
be carried out in this area to include free!form shape representation techniques in the procedure[
The main focus in this present work is to assess the concepts behind the approach and methodology[

2[ Topology design methodology

Step 0 Initial Shape Optimization ] A shape optimization process is carried out on the initial
design[ The objective function is thus minimized and the optimum shape obtained based on the
_xed topological con_guration of the initial design[

Step 1 Response Analysis of Interior Points ] To evaluate the response behaviour of the domain
interior\ a set of interior points must initially be obtained[ This is done by _rst determining the
maximum dimensional extents xdim and ydim of the structural domain in the x! and y!directions\
respectively "see the example in Fig[ 0#[ A rectangular grid of points is then established within the

Fig[ 0[ Grid of points within maximum extent of domain[
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maximum extent of the domain[ The density of the grid is variable and can be adjusted by changing
the numbers of points NGx and NGy along the x! and y!directions\ respectively[

A procedure is required next to ascertain which of the grid points are interior and which are
exterior with respect to the structural domain\ so that exterior points can be discarded[ Based on
a Gauss| theorem formulation\ this is done by verifying the angle subtended at each point by
segments of the domain boundary through a closed integration round the boundary[ Besides
checking if the grid point is inside or outside of the domain\ the integration process is also used to
check that the point is not too near the boundary[ Points which are less than a minimum distance
rmin from the boundary will also be discarded "even if they are interior# because holes introduced
at such points will be too near to the boundary\ possibly resulting in boundary interferences or
intersections[ The minimum distance rmin is determined based on a prescribed fraction Rmin of either
the maximum extent xdim or ydim\ whichever is the smaller ]

rmin � Rminðmin"xdim\ ydim#Ł "0#

The appropriate size of fraction Rmin is based on heuristics\ and a typical value around Rmin � 9[04
is usually e}ective[

Once the set of interior points has been obtained\ the BE method of response analysis is
performed to evaluate the stresses at each point[

Step 2 Introduction of Hole ] With the results of the interior response available\ the interior point
with the lowest von Mises equivalent stress is located[ The x! and y!coordinates of this point will
become the positional coordinates xhole and yhole of the centre of the circular hole to be introduced[
The initial radius of this hole rhole is determined based on a prescribed fraction Rhole of either the
maximum extent xdim or ydim\ whichever is the smaller ]

rhole � Rhole ðmin"xdim\ ydim#Ł "1#

A typical value of about Rhole � 9[01 is usually prescribed[ The positional and size parameters
"xhole\ yhole and rhole# of the new hole introduced will then have to be installed "together with
their respective velocity _elds# as additional design variables for subsequent shape optimization
processes\ along with all other existing design variables pertaining to the main structural boundaries
and any holes previously introduced[ The new hole boundary will also be discretized and added to
the existing BE mesh of the structure[ It should be noted that the initial hole position is in a small
way in~uenced by the density of grid points used\ and the initial hole size is determined by the
value of the fraction Rhole prescribed[ However\ the exact size and position of the hole introduced
is not critical to the eventual results attained because these parameters are made variable and will
be _ne!tuned in subsequent shape optimization steps[

As alternatives to the circular hole\ holes of other shapes such as slots or ellipses may also be
used[ These shapes are likely to require parameterization by more design variables than the circle\
but as long as the variables are pre!de_ned together with the necessary velocity _eld terms\ such
hole shapes may be used instead[ However\ circular holes are used here because they are the most
generally suitable for altering the structural con_guration[

Step 3 Shape Optimization on Modi_ed Topolo`y ] A shape optimization process is performed to
obtain the optimum shape based on the new topological con_guration[
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Step 4 Check on Conver`ence and Termination Criteria ] If the current objective function value is
greater than or equal to that of the previous topological con_guration\ convergence is assumed
and the procedure ended by skipping to Step 5[ If the number of holes introduced has reached the
prescribed maximum allowable number tmax\ the procedure is to be terminated by skipping to Step
5[ If neither the convergence nor termination criterion has been met\ the iteration is continued by
returning to Step 1[

Step 5 Termination of Procedure ] The procedure is ended and the optimum design with the lowest
objective function value indicates the topological and shape optimal design[

3[ Shape design optimization scheme

An e}ective shape optimization scheme is essential to the overall topology design procedure
and this process is reviewed here[ The scheme applied is based on a mathematical programming
approach coupled with the BE method of response:sensitivity analysis "Tai and Fenner\ 0885#[
There is ~exibility with the use of a mathematical programming approach since any design objective
can be treated\ whereas the optimality criteria approach is usually formulated based on a single
objective function such as the elastic compliance[ The numerical optimization technique used is
the penalty function method with extended interior penalties "Vanderplaats\ 0873#[ Objective and
constraint function values:gradients are dependent on the structural response evaluated by the BE
method[ There is recognition of the advantages for its use in the _eld shape optimal design\ such
as the more accurate boundary stress calculations compared to the FE method "Mota Soares and
Choi\ 0875#[ Furthermore\ as the topology design procedure modi_es the variable "external#
boundary shape of the structure plus the positions and sizes of the circular holes introduced\ the
BE method is very suitable since no discretization is needed inside the domain[ This is because the
BE mesh of the hole is {free!~oating| within the main body\ and so variations of the hole position\
size and shape do not disturb the discretization around the rest of the structure[ This reduces the
computation required with regards to velocity _eld terms and remeshing of the whole structure\
making the BE method very useful for such optimal feature positioning problems[

The BE formulation for linear elasticity "Becker\ 0881# directly treats the response quantities of
displacement uj and traction tj based on the following analytical boundary integral equation "BIE#

Cij"P#uj"P#¦gG
Tij"P\ Q#uj"Q# dG"Q# � gG

Uij"P\ Q#tj"Q# dG"Q# "2#

where P and Q are\ respectively\ the boundary load and _eld points\ G is the _eld boundary\ Uij

and Tij are\ respectively\ the displacement and traction kernels "Kelvin|s solution#\ and Cij is a
Cauchy principal limiting value dependent on the boundary geometry at load point "but can be
readily determined through considerations of rigid!body motion#[ Tensor notation is used to
represent spatial dimensionality where appropriate\ with the summation convention implied for
repeated indices[ The kernel functions in the BIE are evaluated as follows

Uij"P\ Q# �
0

7pm"0−n# $"2−3n# ln 0
0
r1 dij¦

1r
1xi

1r
1xj% "3#
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Tij"P\ Q# �
−0

3p"0−n# 0
0
r1 6

1r
1n $"0−1n#dij¦1

1r
1xi

1r
1xj%¦"0−1n# 0

1r
1xj

ni−
1r
1xi

nj17 "4#

where

1r
1n

�
1r
1xi

1xi

1n
"5#

1r
1xi

�
xi−zi

r
"6#

1xi

1n
� ni "7#

r � r"P\ Q# �"xixi−1xizi¦zizi#0:1 "8#

where dij is the Kronecker delta\ r is the distance between the load and _eld points\ zi and xi are\
respectively\ the coordinate positions of the load and _eld points\ ni is the unit outward normal at
the _eld point\ m is the shear modulus and n is the Poisson|s ratio[

The numerical implementation of the BIE "2# is performed by discretization using isoparametric
quadratic boundary elements\ followed by a systematic point collation procedure to assemble the
set of linear algebraic equations based on taking each boundary node in turn as the load point[
After solving the equation set for the unknown displacements:tractions\ boundary tangential
strains are evaluated so that boundary stresses can be determined through the stressÐstrain
relations[ As the topology design procedure requires stress values at the domain interior\ these
stresses sij at each interior point are obtained by treating that point as the load point p in the
Somigliana|s identity for stresses

sij"p#¦gG
Skij"p\ Q#uk"Q# dG"Q# � gG

Dkij"p\ Q#tk"Q# dG"Q# "09#

where the third!order tensors Skij and Dkij are de_ned as follows

Skij"p\ Q# �
m

1p"0−n# 0
0

r11 6ni $1n
1r
1xi

1r
1xk

¦"0−1n#djk%¦nj $1n
1r
1xk

1r
1xi

¦"0−1n#dki%
¦nk $1"0−1n#

1r
1xi

1r
1xj

−"0−3n#dij%7¦
m

p"0−n# 0
0

r11
1r
1n $"0−1n#

1r
1xk

dij

¦n 0
1r
1xi

djk¦
1r
1xj

dki1−3
1r
1xi

1r
1xj

1r
1xk% "00#

Dkij"p\ Q# �
0

3p"0−n# 0
0
r1 $"0−1n# 0

1r
1xi

djk¦
1r
1xj

dki−
1r
1xk

dij1¦1
1r
1xi

1r
1xj

1r
1xk% "01#

Sensitivity analysis with the BE method is carried out by an implicit analytical di}erentiation of
the BIE "2#[ By di}erentiating with respect to an entirely arbitrary geometric variable\ any structural



K[ Tai\ R[T[ Fenner:International Journal of Solids and Structures 25 "0888# 1910Ð19391917

shape design variation can be handled[ Whole boundary segments can be made variable\ in addition
to localized shape changes[ Hence problems of the optimum positioning of features can also be
solved\ as required in the topology design procedure where the positions of holes introduced are
optimized simultaneously with the overall structural shape[ The derivative BIE is thus given by

C?ij"P#uj"P#¦Cij"P#u?j"P#

¦gG
ðT?ij"P\ Q#uj"Q#¦Tij"P\ Q#u?j"Q#Ł dG"Q#¦gG

Tij"P\ Q#uj"Q#ð dG"Q#Ł?

� gG
ðU?ij"P\ Q#tj"Q#¦Uij"P\ Q#t?j"Q#Ł dG"Q#¦gG

Uij"P\ Q#tj"Q#ð dG"Q#Ł? "02#

where the primed quantities denote the derivative with respect to the design variable[ The dis!
placement and traction kernels are di}erentiated as follows

U?ij"P\ Q# �
0

7pm"0−n# $"2−3n# 0ln
0
r1

?

dij¦ 0
1r
1xi1

? 1r
1xj

¦
1r
1xi 0

1r
1xj1

?

% "03#

T?ij"P\ Q# �
−0

3p"0−n# 0
0
r1

?

6
1r
1n $"0−1n#dij¦1

1r
1xi

1r
1xj%¦"0−1n# 0

1r
1xj

ni−
1r
1xi

nj17
−

0
3p"0−n# 0

0
r1 60

1r
1n1

?

$"0−1n#dij¦1
1r
1xi

1r
1xj%¦1

1r
1n $0

1r
1xi1

? 1r
1xj

¦
1r
1xi 0

1r
1xj1

?

%
¦"0−1n# $0

1r
1xj1

?

ni−0
1r
1xi1

?

nj¦
1r
1xj

n?i−
1r
1xi

n?j%7 "04#

where

0
1r
1n1

?

� 0
1r
1xi1

? 1xi

1n
¦

1r
1xi 0

1xi

1n1
?

"05#

0
1r
1xi1

?

� 0
0
r1

?

"xi−zi#¦
x?i−z?i

r
"06#

0
1xi

1n1
?

� n?i "07#

r? �
0
r
"xix?i−x?izi−xiz?i¦ziz?i# "08#

It can be noted that all the derivatives expressed so far are ultimately dependent on the terms z?i
and x?i which are derivatives of boundary point positions[ These represent the design velocity _eld
that indicate the geometric sensitivity of the point with respect to the design variable[ By an
appropriate de_nition of velocity terms\ and design variable or shape control parameter can be
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treated[ Entire segments of the boundary\ and not just a single material point alone\ can therefore
be governed by one single geometric variable[ Basic geometric parameters\ including the radial size
of circular holes and translational position of boundary segments\ are used here[ The following
list shows how velocity _elds are de_ned for the various design variables v ]

"a# v is the translational position of a boundary segment ]

xi � v¦x¹ i\ "19#

x¹ i � fixed relative position of material point from a reference point of the boundary segment

x?i � 0 "10#

"b# v is the radius of a circular arc boundary segment ]

xi � vx¹ i\ x¹ i � fixed direction cosine "of normal to boundary# at material point "11#

x?i � x¹ i "12#

"c# v is the position of one end point of a straight line segment ]

xi � v¦r"v¹−v#\ v¹ � fixed position of the opposite end point of line segment "13#

x?i � 0−r\ "14#

r � fixed proportional "intrinsic# distance of material point along segment from v

With the BE sensitivity analysis formulation\ velocity terms are only required at boundary nodal
points since only the boundary is discretized and treated directly[ Hence there is no need for
computation with regards to velocity _eld in the domain[

4[ Numerical results

In this section\ a total of three topology and shape optimal design problems are demonstrated
on two di}erent structures[ The structural dimensions\ material properties and other quantities
are indicated without units as they can assume any compatible system of units[ At the start of each
problem a shape optimization process is carried out on the initial design\ followed subsequently
by one shape optimization procedure after each change of topology "upon introduction of a hole#[
The topological con_guration of the initial design is referred to as con_guration 9\ while that of
the design after the _rst change of topology "addition of the _rst hole# is con_guration 0\ and so
on[ The shape optimum designs obtained for the various con_gurations are illustrated by a
sequence of two!dimensional stress contour plots of the structural domain[

4[0[ Minimization of compliance and wei`ht of a cantilever beam

This problem involves a cantilever beam with a uniformly distributed load at a small portion of
its underside near the free end "see Fig[ 1#[ There are three design variables which a}ect the
geometry of the beam[ The _rst is v0 which is the height of the beam at the _xed end[ The other
two variables are v1 and v2 which are the angles controlling the orientations and lengths of the free
end and top edge of the beam[ The bottom edge is of a constant length and is horizontal[ A similar
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Fig[ 1[ Cantilever beam under load near free end[

cantilever beam problem has also been solved by Eschenauer et al[ "0883# using the FE method
and with more complex shape design variables\ and minimizing the elastic compliance subject to
constraints on the structural volume[ In this present example\ however\ the compliance is also
minimized subject to constraints on the maximum material volume but with additional constraints
on the maximum allowable von Mises equivalent stresses[ The inequality constraints imposed on
this problem therefore involve an upper limit Aupper

limit
� 3499 on the area of the structure\ plus an

upper limit supper
limit

� 149 on the equivalent stresses around the structure[ Assuming a uniform
thickness for the beam\ the area is a measure of the volume of material in the structure[

The structural area and its derivatives are evaluated analytically based on the design variables
and other dimensions of the beam[ The elastic compliance objective and stress constraint functions
and their derivatives are computed numerically through plane stress BE analyses[ The compliance
is evaluated as proportional to the strain energy II of the structure ]

P �
0
1 gG

tjuj dG "15#

The results of the overall shape and topology design procedure are illustrated in the objective
function iteration history plot "Fig[ 2# showing how the compliance has been reduced[ The iteration
plot is not continuous but is broken into four parts\ one for each topological con_guration
"con_gurations 9\ 0\ 1 and 2#[ At the initial design point "iteration number 9#\ the area constraint
is satis_ed but the stress constraints are violated[ Topological con_guration 9 is that of the initial
design\ and the optimum shape obtained at the end of the optimization procedure performed on
this con_guration is given by iteration number 03[ A hole is then introduced to form the next
con_guration "con_guration 0# and the whole process is then repeated in an iterative manner[ As
can be seen from the _rst design point of con_guration 0 "at iteration number 04#\ the addition of
a hole has caused the violation of stress constraints "and this also tends to be true for the rest of
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Fig[ 2[ Plot of objective function iteration history "cantilever beam*compliance minimization#[

the con_gurations 1 and 2#[ The overall design procedure has been terminated at the end of
con_guration 2 because the prescribed maximum allowable number of holes to be introduced is
tmax � 2[ It is uncertain whether the addition of one more hole will make a further signi_cant
reduction of the objective function but\ in any case\ with only a small improvement in the optimum
compliance value from con_guration 1 to 2\ it is unlikely that further addition of holes will be
e}ective[ From the shape optimum at the end of initial con_guration 9 to the shape and topological
optimum at the end of con_guration 2\ the compliance of the structure has been reduced by 12)[
This shows that\ as expected\ the performance of a structure can be further improved and a
stronger optimum should be attainable when the topology "and not just the shape# of the structure
is allowed to vary[ The von Mises equivalent stress contour plots of the optimum structural shapes
resulting at the end of each topological con_guration is shown in Fig[ 3[ The circle in dashed lines
within the contour plot of any particular con_guration shows the initial position and size of the
hole to be introduced at the beginning of the following con_guration[ The optimum shape " from
con_guration 9# can be compared to the optimum shape and topology " from con_guration 2# in
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Fig[ 3[ Equivalent stress contour plots for optimum shapes of di}erent topological con_gurations "cantilever beam*
compliance minimization#[

Fig[ 4[ The results obtained from the procedure here may not be directly comparable to those from
Eschenauer et al[ "0883# because of the use of free!form shape functions and the introduction of
cutouts at boundaries by the latter[ However\ the _nal overall shapes and the regions where
material has been removed are quite similar between the two[

A second and di}erent optimal design problem is next formulated based on the same cantilever
beam structure[ This is a weight minimization problem where the structural weight is minimized
subject to constraints on the maximum von Mises equivalent stresses[ Assuming a uniform mass
density and beam thickness\ minimizing the weight is equivalent to minimizing the area of the
structure[ All the other conditions and parameters are the same as in the previous compliance
minimization problem\ except that a value of v0 � 69 is used for the initial height of the beam
instead of v0 � 39 as in the former case[

The results of the overall procedure are shown in the objective function iteration history plot
"Fig[ 5# indicating how the structural area has been reduced[ It can be seen that the optimum
objective function value at the end of con_guration 2 is worse than that of con_guration 1\
signifying that convergence has been attained in the solution process and the optimum design is
given by that in con_guration 1 "with only two holes introduced#[ The addition of the third hole
has worsened the design and increased the objective function "increased the material volume
needed to maintain the stresses within the allowable limit#[ With this hole already added\ one way
to improve on the objective function is to have the hole eliminated in some way[ That is probably



K[ Tai\ R[T[ Fenner:International Journal of Solids and Structures 25 "0888# 1910Ð1939 1922

Fig[ 4[ Optimum shape and optimum shape:topology designs "cantilever beam*compliance minimization#[

the reason why\ in the shape optimization process of con_guration 2\ the size of the third hole
"plus that of the neighbouring second hole# has been signi_cantly reduced[ This can be seen from
the stress contour plots of the optimum shapes for the various topological con_gurations "Fig[ 6#[
From the optimum shape "of con_guration 9# to the optimum shape and topology "of con_guration
1#\ the structural area has been reduced by about 10)\ and these two designs are compared in
Fig[ 7[ It can also be seen that the optimum shapes obtained in this problem are signi_cantly
di}erent from those in the preceding minimum compliance problem[

4[1[ Wei`ht minimization of a connection bracket

This problem represents a typical connection bracket or plate used to secure two frame members
or beams "inclined at certain angles# to a vertical support "see Fig[ 8#[ The bracket is loaded
through the bolted joint with the frame members while being fully _xed to the support by\ for
example\ welding[ The loads acting at the four bolt holes are in the same directions at their
corresponding frame members[ The arrangement of the bolt group is _xed relative to the support\
and only the outer shape "and topology# of the connection bracket is variable[ The straight!edged
four!sided concept of the bracket is retained\ but the positions of the four corners are variable[
Hence design variables v0\ v1\ v4 and v5 de_ne the x! and y!coordinates of the two free corners while
v2 and v3 are the y!coordinates of the two corners at the _xed "supported# vertical edge[

The objective is to minimize the weight subject to constraints on the maximum von Mises
equivalent stresses around the bracket[ Assuming a uniform mass density and plate thickness\
minimizing the weight is equivalent to minimizing the area and hence the objective function is
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Fig[ 5[ Plot of objective function iteration history "cantilever beam*weight minimization#[

simply the area of the bracket "which is evaluated analytically#[ The optimization procedure is
carried out with the maximum allowable equivalent stress as supper

limit
� 149[

Results of the overall design procedure are shown in the objective function iteration history
"Fig[ 09#[ The procedure has been terminated at the end of con_guration 2 as the prescribed
maximum number of holes to be introduced is tmax � 2[ The equivalent stress contour plot of the
optimum shape for each topological con_guration is shown in Fig[ 00\ where the circles in dashed
lines show where the holes are introduced[ There is a 060

1
) reduction in area from the optimum

shape at the end of initial con_guration 9 to the optimum shape and topology design at the end of
con_guration 2\ and these two designs are compared in Fig[ 01[

5[ Conclusion

Some of the basic concepts regarding topology design optimization of linear elastic continua
have been discussed in this paper[ The discrete nature of such problems is recognized and an



K[ Tai\ R[T[ Fenner:International Journal of Solids and Structures 25 "0888# 1910Ð1939 1924

Fig[ 6[ Equivalent stress contour plots for optimum shapes of di}erent topological con_gurations "cantilever beam*
weight minimization#[

Fig[ 7[ Optimum shape and optimum shape:topology designs "cantilever beam*weight minimization#[
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Fig[ 8[ Connection bracket loaded through bolted joint[

intuitive approach is adopted to optimize structural topology because\ with the present state of
knowledge in this _eld\ such discrete optimization problems have not been solved other than by a
heuristic:intuitive approach[

Topological changes are made by the removal of material from within a structure "by the
introduction of holes#[ Therefore the overall strategy used here is actually to solve a sequence of
shape optimization problems each belonging to a di}erent topology con_guration "as the number
of holes increases#[ There is uncertainty if or when the optimum topology has been reached since
there are no optimality conditions to indicate the optimum point for discrete optimization problems
"other than checking the in_nite number of all feasible solutions#[ Therefore holes are added up
to the point where the objective function start to worsen or up to a prescribed maximum number
of holes\ and the best result is taken as the optimum topology and shape[ It is noted that the idea
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Fig[ 09[ Plot of objective function iteration history "connection bracket#[

of introducing holes and the criteria for deciding their initial positions are all based on intuitive
concepts with no formal mathematical foundation provided[ After a hole is introduced\ its position
and size together with the shape parameters of the rest of the structure "and any holes previously
introduced# are then varied to reach an optimum shape[ The initial position:size of a hole is deemed
not to be a critical factor in the solution process except for the possibility that the results obtained
may be a local optimum[ This is just a limitation of conventional numerical optimization methods
which cannot guarantee a global optimum result[

Unlike previous work in this area where the FE method is sued\ a BE formulation is applied
here with some of its advantages highlighted[ With encouraging results demonstrated by the
example problems solved\ work is ongoing to extend the methodology by incorporating more
comprehensive shape variations using free!form shape parameterization techniques[
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Fig[ 00[ Equivalent stress contour plots for optimum shapes of di}erent topological con_gurations "connecting bracket#[
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Fig[ 01[ Optimum shape and optimum shape:topology designs "connection bracket#[
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